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Abstract

In this paper, the dynamic instability of a simple supported, finite-length, laminated circular cylindrical shells
subjected to parametric excitation by axial loading and covered by piezoelectric materials is presented analytically. The
shell is taken to be orthotropic and could be oriented at angles of 0° and 90° (cross-ply) or at +60 and —0 (angle-ply)
with respect to the shell axis. The effect of transverse shear deformation on dynamic behavior of structures has been
studied, and the theory used is a general first-order shear deformation shell theory. Unimodal approximation of so-
lution is adopted, and several mode shapes are selected to explain the effects of the piezoelectricity of materials, as well
as the effects of the geometric parameters on instability regions. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, smart structures with piezoelectric sensors and actuators have attracted serious attention
as they can sense and alter the mechanical response during in-service operation. On the other hand, light-
weight shell type structures may be one of the most popularly used structures in space vehicles. For this
reason, shell type smart structures have become the focus of study for many researchers. Tzou and co-
workers (1991, 1994, 1997) studied piezoelectric shell type continua using finite element method and an-
alytical analysis method; Miller and Abramovich (1995) studied thick circular cylindrical shells with
distributed self-sensing piezoelectric actuators using the first-order shear theory. Chen and Shen (1996a,b)
performed the study of exact studies of piezoelectric circular cylindrical shells and piezothermoelastic shells;
also, they studied the stability of piezoelectric circular cylindrical shells (Chen and Shen, 1997).

Dynamic instability of circular cylinders has been studied by many researchers. The parametric reso-
nance of cylindrical shells under axial loads was first treated by Bolotin (1964), Yao (1963, 1965) and
Tamura (1975), etc. For thin cylindrical shells under periodic axial loads, the method of solution is usually
first to reduce the equation of motion to a system of Methieu’s equations. Bert and Birman (1998) studied
the parametric instability of thick, orthotropic, circular cylindrical shells using first-order shear deformable
shell theory. The perturbation method is employed by Argento and Scott (1993a,b) in the study of dynamic
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instability of layered anisotropic circular cylindrical shells. In a recent study, Ng et al. (1998) investigated
the effects of different lamination schemes of antisymmetric cross-ply laminates on the instability regions of
the laminated cylindrical shells. Lam and Ng (1997) studied the dynamic stability of thin isotropic cylin-
drical shells using four common thin shell theories, namely, the Donnell, Love, Sanders and Flugge shell
theories. Up to now, to the authors’ knowledge, however, there is no paper published about the dynamic
instability of piezoelectric circular cylindrical shells.

In this paper, dynamic instability of a simple supported, finite-length, laminated circular cylindrical
shells covered by piezoelectric materials, which are distributed symmetrically, is studied. The shell is sub-
jected to a uniformly distributed cyclic axial loading and includes the effects of transverse shear defor-
mation. The effect of the piezoelectric effect on the dynamic instability is considered. The result can be
useful in an active control.

2. Assumptions

The analysis is based on the following assumptions, most of which can be found in Bert and Birman
(1998):

1. The analysis is linear, including both linear constitutive relations for the material and linear strain—
displacement relations.

2. The shell is circular cylindrical without initial imperfections.

. The in-surface and rotary inertia are neglected.

. The loading considered is axial, assumed to be uniformly distribution and to consist of a constant por-
tion and a simple harmonic excitation over the end sections.

. Perfect bonding is considered between different layers.

. The directions of polarization of piezoelectric layers are in the same direction.

. All damping effects are neglected.

. The unimodal approximation of solution is adopted, and several isolated dynamic instability mode
shapes are analyzed in numerical examples in order to take account of the effect of piezoelectricity.
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3. Analysis

Consider an orthotropic circular cylindrical cross-ply laminated shell covered by a piezoelectric material
symmetrically. The shell is subjected to uniformly distributed, parametric, time-dependent loads of intensity
N, (¢) along the axial direction. According to Love’s and Loo’s theory, the equations of motion of such a
shell are (the effect of in-surface and rotary inertias has been neglected)

Nl.x+N64y :07 (1)
1

N6,x + N24y + EQ4 = 07 (2)
N

QS‘X + Q4‘y - f + N1 (t)w,xx = phw‘th (3)

Ml,x +M6,y - Q5 = 07 (4)

M6,x + MZ,y - Q4 =0. (5)
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The charge equilibrium equation is
1
Dz,z + Dyy + Dx,x + EDZ = 07 (6)

where M; and N, denote the stress couples and in-surface stress resultants respectively; Q;; are the shearing
stress resultants; u, v, w, the displacements along the x-axis (axial), y-axis (circumferential), z-axis (radial),
respectively, ¥, and y,, the bending slopes in the x—z and y—z planes, ¢ is the time, (...), = 0(...)/0i, p is the
material density, and D, is the electric displacement along the i-axis. '

Suppose the voltage distribution is ¢ = z¢,(x, ). The constitutive equations of a specially material are

N] A]] A]z O 0 O 0 é’(l) C31
Nz Alz Azz 0 0 0 0 83 C3)
N6 0 0 A66 0 O 0 8(6) O

= — — . 7
M1 0 O O D“ D12 0 Xl f31 { ¢0} ( )
M, 0 0 0 Dp Dy O 1 Ve
M, 0 0 0 0 0 D]y 0

The extensional, coupling, and bending stiffness are defined as

h)2
(4i, Dy) :[ (1722)Qijdz+/

e h/2

h/2+h, —h/2

(l,zz)E,-de—i-/ (1,2%)E; dz, (8)

—h/2—h,

h)2+hy —h/2
)= [ QAegde+ [ (e
h

/2 —h/2—h,

h/2+h, —h/2
81:]* = / ZSl:/'dZ + / ZSide,
h/2 —h/2—hy

where, E;; are the modulus of the piezoelectric film PVDF, and #,, the thickness of the PVDF, Q;;, the
plane-stress transformed reduced elastic stiffness, and s;;, ¢;;, the dielectric constant and piezoelectric stress
coefficient, respectively. The shear stress resultants are

e=1% sllar+la &){a) 0

where the thickness shear stiffnesses are

©)

h/2
S,«,»:kf/ O: (i=4,5) (11)
—h/2
and k? is the shear correction coefficient. The electric displacement resultants are
!
Dx 0 0 0 €15 0 8(2) &11 _Z(Z)O,x
Dy = 0 0 €24 0 0 &4 + €22 —zqﬁo‘y . ( 1 2)
D, ez e 0 0 0] e €33 )
0
&

In the above equations, e? are the middle-surface engineering strain components, ¢, and ¢s, the transverse
shear strains, and y;, the curvature and twist changes given by
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0 0
6 =ux, & =U,+w/R,

0
& = U, + Uy,

&4 = lpz + W,y — &5 = lﬁl + W,x; (13)

v
R’
X1 = Wlw X2 = sz

X6 = lpLy + o+ (v —uy)/2R.

Because of the symmetric arrangement of the PVDF, the relationship of voltage of the two piece of PVDF
is

¢up _ 7¢down. (14)

So, the even term of z which related with ¢ will be zero when the integral is along z-axis.
The shell is freely supported. The boundary conditions considered in Tamura and Babcock (1975) are
used:

Nl(ovy):Nl(L,y):Oﬂ U(an):v(l‘vy):(),
M](O,y) :MI(L7y) :Oa l//Z(O?y) :l/jl(L?y):O7 (15)
w(0,y) =w(L,y) =0,
and the electric boundary conditions

#(0,y) = ¢(L,y) = 0. (16)

If the shell is a cylindrical curved panel (open shell) freely supported, which requires that the following
additional boundary conditions be satisfied (Tamura and Babcock, 1975):

Ny (x,0) = Ny(x,b) =0, M,(x,0) = M,(x,b) =0,
w(x,0) = w(x,b) =0, u(x,0)=u(x,b) =0, (17)
¥i(x,0) =¥, (x,0) =0, ¢(x,0) = ¢(x,0) = 0.
The boundary conditions (14) and (15) are satisfied if
u = U(t)hsinaxcosfy, Y, = X(¢)cosoxsinfy,
v = V(t)hcosaxsinfy, W, = Y(¢)sinoxcosfy, (18)
w = W(t)hsinoxsinfy, ¢, = @(¢)hsinoxsinfy,

where o = mn/L and § = n/R for a complete cylinder and nn/b for a panel.

The effect of in-surface and rotary inertias on vibration of the shell at frequencies near the fundamental
frequency are negligible. Since dynamic stability is most important in the case in which the excitation
frequencies are of the same order as the fundamental frequency, these inertias are neglected here. Substi-
tuting Eqgs. (7), (10), (12) and (18) into Egs. (1)-(6) and integrating Eq. (6) along the z-axis, one can obtain
the following set of equations:

& '
[Cij]{Uv Va W7X7 Y?¢}T = {07072—1/[/«,”’0’0’0} : (19)
T
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The nondimensional coefficients of the square matrix C; are

Cii = —Aye’ — AdeB’,  Cia = Coy = —af(A1z + Age),

Ci3=Cy =a(h/R)A12, Cia=Cy =0,

Cis=Cs1 =0, Ci=0,

Cy = —Aes® — Anf” — (h/R)*Su,

Cy3 = Cyp = (S +A4n)(h/R)B, Cyu = Cspn =0,

Cos = Csy = (h/R)Saa,  Ca6 = (fu/ErR)p,

Cyy = —Sss0® — Suf® — (h/R) + NYo cos2wt,

Ciyy = Cy3 = —Sssa,  C35 = Cs3 = —Suf,

fis?? fuf’ > 2
Coe = — 1155 Cas = —Do? — Desf* — S
36 hE; hEr , 44 1% 66ﬁ 555
Cys = Csy = —(D12 + Des)ofp,  Cas =f31 —Jis o,
hE
Css = —Dgs> — D> — Sas,  Csg ZAMﬁv
hE

Cei = —(cai/R)a, Cg = (c24/R)B — (c32/R)P,
Ces = —(c15/h)a® = (caa/ W) B’ + coh /R, Cgs = (—cas — c32) B/,

Ce4 = (—015 - 031)0€/h> Cos = («911/}1)062 + (Szz/h)ﬁ27

where,
A — Ay - Sij Dy
YUERT Y Erh’ TV Ehd
mmh nh
OC:T, ﬁ:E, Nl():NIO/ETh

Representing the nondimensional x-axis force by

Nlo = Ny + Njcos2wt,

2295

(20)

where N, is a constant portion and always set to zero in the next few sections. NV is the swing of the simple
harmonic excitation. Then, the set (18) can be reduced to a single linear second-order differential equation

as follows:

W+ (ap — 2qcos2t)W = 0.

(21)

This is the well-known Mathieu’s equation, where 7 is a nondimensional time parameter (= wt), and the

Mathieu parameters are



2296 X.-M. Yang, Y.-P. Shen | International Journal of Solids and Structures 38 (2001) 2291-2303

a = (1) L/'K = (1/20°) (/0 N2,
@ = (pL*/Erh?*)o?,

a2
K, = —(Ci3Ky + Cp3Ky + C34Ky + C3sKy + Ca6Kep) + 0255 + fSas + (1—2> Az + Noo?,

CukK CpKy +C B3K
Ko = —Cy + —X 1 CisKy, Ky = _%a Ky = =B + ; ~ + BiuKy,
1 1
Dy + D>Ky D.Ds — DyDq
Ky =————"—, Ky= )
D; D,Dg — DsDs
Dy = BiaByy — BB, D = Bi3By — BnbByy,
D3 = ByBy1 — BB, D4 = B3B3 — BnByy, (22)
Ds = B13B3; — Bu3B11, Dg = BuB31 — BBy,
CciC CL,C»C.
B = ——2% 1 0),C, Biy = — 2228 1 Ch3Cy6 — CayCoe,

C11 Cll
Biz = Cy5Cs6 — C4sCrs,  B1a = —CysCog,
By = CysCys, By = C35C45 — C34Cse,
By = Cy5Cs6 — C44Css,  Brg = Cs5Cys — CysCsg,
C1,Cs, C. C13C, C.
By = CiyCag — ——0% By = Ce3Cas — C34Cop — ——2—%
C]] Cll
B3z = Cg4Ca6 — C44Ces, B3y = Co5Ca6 — CysCos.
The boundary of the instability regions of the solutions of Mathieu’s equation are tabulated. The
boundary of the first instability region are given by McLachlan (1964)

a0:1:|:q—§q2:|:é—493—"' (23)

if ¢ is small enough so that the series converges. The higher instability regions are not always realized if the
shell vibrates with limited amplitudes due to damping.

It is convenient to show the boundary of the instability regions on the frequency-load plane where the
horizontal axis corresponds to the squared nondimensional frequency w? and the vertical axis represents the
nondimensional amplitude of the load Nj.

If the term ¢ is so small that nonlinear terms in Eq. (22) can be neglected, the boundaries of the first
instability region are represented by the following relations:

o = (L/h)* (K, FIN1o?). (24)

4. Results and discussion

A two-layer cross-ply shell is considered. The material properties taken were the following:
EL/ET = 407 GLT/ET = GLZ/ET = 06, Gyz/ET = 05, Vir = 025, ki = kg = %,
Er = 6.85 x 10° Pa.

The dimension of the shell

h=0.02 m, b/R:H:g.
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For the shell without a piezoelectric material, the dimensionless stretching, bending, and transverse shear
stiffness are as follows (Bert and Birman, 1998): A, = 20.5, 4, = 0.25, A» =20.5, A¢s = 0.6, Dy =
1.7083, D, = 0.07083, D,y = 1.7083, D¢s = 0.05, Syq = 0.4583, Ss55 = 0.4583. The material properties of
the PVDF are taken as e; = 0.044 C/m?, ¢, =0.1 x 10™° F/m, &» = 0.1 x 10° F/m, p = 1800 kg/
m? E; = Ep =2x10° Pa, G, = G35 = 0.775 x 10° Pa, Gy; = 0.775 x 10° Pa. The thickness of PVDF,
h, =50 um. Let f = nn/b, the method in Bert and Birman (1998) can be used for the calculation of the
dynamic instability of a cylindrical panel, a comparable result can be obtained.

Figs. 1-4 present the boundaries of instability regions corresponding to different mode shapes and
different shells. In these figures, the boundaries of instability regions which consider the effect of PVDF and
which do not consider the effect of PVDF are almost overlapped; this claims that the effect of PVDF is very
slight. In general, we believe that the piezoelectric effect should increase the frequency of structures, but, in
this case, we notice that the dynamic instability frequency is slightly decreased due to the piezoelectric effect.
The result is very interesting although the effect is slight, and perhaps it is owing to the symmetric distri-
bution of PVDF.

N ol

b b
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1000 1020 1040 1060 1080 1100 1120

Fig. 1.L/R=1,R/H =5, a, b (solid) for (m,n) = (1,5), (2,5) without PVDF, respectively, and a’, b’ (dash) for the case with PVDF.
N
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Fig. 2. L/R=1,R/H =5, a, b (solid) for (m,n) = (1,0), (2,0) without PVDF, respectively, and a’, b’ (dash) for the case with PVDF.
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Fig. 3. L/R =10, R/H =15, a, b (—) for (m,n) = (1,5), (2,5) without PVDF, respectively, and a’, b’ (- - -) for the case with PVDF.
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Fig. 4. L/R =10, R/H = 15, a, b (—) for (m,n) = (1,0), (2,0) without PVDF, respectively, and a’, b’ (- - -) for the case with PVDF.

Table 1 presents a comparable result of a short thick cylindrical panel (L/R = 1, R/H = 5), and Table 2
presents the result of a long thin cylindrical panel (L/R = 10, R/H = 15). Four mode shapes are considered
here, it is m = 1 and 2 (m is the number of half waves along the shell axis), » = 0 and 5 (n is the number of
circumferential half waves), where L stands for including piezoelectric layers but ignoring piezoelectric
effect, and P stands for considering piezoelectric effect.

From the result of calculation, one can draw a conclusion: To short thick shell, the PVDF hardly affects
the dynamic instability. If the precision is improved enough, then, to long thin shell, the dynamic instability
frequency is slightly waned due to the piezoelectric effect.

When using PVDF as actuators, it is equivalent to applying the load. Theoretically, the size of instability
zone and instability frequency can be altered freely. There is, however, almost no variation of dimensionless
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Table 1
Effect of PVDF on a short, thick shell (L/R =1, R/H =5)
m n @ x 1073 (N, =0) @ x 1073 (N, =1) @3 x 1073 (N, =1)
Without With Without With Without With
1 5 10.3094 10.3095 10.1860 10.1861 10.4328 10.4328
1 0 0.57975 0.57975 0.45638 0.45638 0.70312 0.70312
2 5 10.6268 10.6269 10.1333 10.1335 11.1203 11.1204
2 0 0.89906 0.89906 0.40558 0.40558 1.39254 1.39254
Table 2
Effect of PVDF on a long thin shell (L/R = 10, R/H = 15)
m n @ x 1077 (N, = 0) @} x 1077 (N =1) @3 x 1077 (N, = 1)
Without With Without With Without With
1 5 86.7810 86.7751 86.7699 86.7640 86.7921 86.7862
1 0 4.61183 4.61184 4.60073 4.60073 4.62293 4.62294
2 5 86.7921 86.7869 86.7477 86.7425 86.8365 86.8313
2 0 4.61208 4.61208 4.56767 4.56767 4.65649 4.65649

dynamic instability frequency until the voltage reaches 10! V; the voltage will cause the electric field which

will damage the PVDF.

If by using the piezoelectric ceramic PZT, the result is different from using PVDF because its modulus
and piezoelectric constant are greater than PVDF’s. Figs. 5-8 reveal the boundaries of instability regions

ZI
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Qo

1720 1740 1780 1780 1800 180 1840

Fig. 5. L/R=1,R/H =5 a, b (—) for (m,n) = (1,5), (2,5) (ignoring piezoelectric effect) and a’, b’ (- - -) for the case considering

piezoelectric effect.
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Fig. 6. L/R=1, R/H =5 a, b (—) for (m,n) = (1,0), (2,0) (ignoring piezoelectric effect) and a’, b’ (- - -) for the case considering
piezoelectric effect.
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Fig. 7. L/R =10, R/H = 15 a, b (—) for (m,n) = (1,5), (2,5) (ignoring piezoelectric effect) and a’, b’ (- - -) for the case considering
piezoelectric effect.
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Fig. 8. L/R =10, R/H =15 a, b (—) for (m,n) = (1,0), (2,0) (ignoring piezoelectric effect) and a’, b’ (- - -) for the case considering

piezoelectric effect.

corresponding to different mode shapes and shells. From the result, the piezoelectric effect of PZT causes

the instability frequency to decrease.

Tables 3 and 4 present a comparable result of different shells for different modes. The comparison clearly
shows that the effect of PZT is very slight. Material properties of the PZT used in Tables 3 and 4 are as

follows:

Table 3
Effect of PZT on a short, thick shell (L/R =1, R/H =5)

m n @ x 1073 (N} =0) @ x 1073 (N, =1) @3 x 1073 (N =1)
L P L P L P
1 5 17.3131 17.2974 17.1897 17.1741 17.4365 17.4208
1 0 0.66323 0.65920 0.53986 0.53583 0.78660 0.78257
2 5 17.8972 17.8454 17.4037 17.3519 18.3906 18.3388
2 0 1.18642 1.18425 0.69294 0.69077 1.67990 1.67173
Table 4

Effect of PVDF on a long thin shell (L/R = 10, R/H = 15)

m n @ x 1077 (N; = 0) @ x 107 (N = 1) @l x 1077 (N = 1)
L P L P L P
1 5 143.379 143.281 143.368 143.270 143.390 143.292
1 0 5.04993 5.03446 5.03882 5.02336 5.06103 5.04556
2 5 143.442 143.316 143.397 143.271 143.486 143.360
2 0 5.05026 5.03049 5.00584 4.98607 5.09467 5.07490
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1390 7.78 743
7.78 1390 743

743 743 11.50

_ 10
[C] = ) 56 x 10" Pa,
2.56

3.06

ey = ey =—520C/m’, p=75x10kg/m’, h, =0.001 m,

€11 = & = 730807 €33 = 635807

where & = 8.854 x 10712 F/m and other terms not shown here are assumed to be zero.
When using PZT as actuators, the effect of piezoelectric is notable compared with PVDF due to the
higher piezoelectric constant. But the voltage still reaches 10® V. It is obviously too high to work for PZT.

5. Conclusion

Comparison of the effect of PZT and PVDF shows that PZT has a stronger effect than PVDF. However,
neither PZT nor PVDF has a strong effect on the unstable region of the structure. Dynamic instability
regions mainly depend on the mechanic load.

Acknowledgements

The study was supported by the National Natural Science Foundation (59635140).

References

Argento, A., Scott, R.A., 1993a. Dynamic instability of layered anisotropic circular cylindrical shells, Part I: theoretical development.
Journal of Sound and Vibration 162, 311-322.

Argento, A., Scott, R.A., 1993b. Dynamic instability of layered anisotropic circular cylindrical shells, Part II: numerical results.
Journal of Sound and Vibration 162, 323-332.

Bert, C.W., Birman, V., 1998. Parametric instability of thick orthotropic circular cylindrical shells. Acta Mechanics 71, 61-76.

Bolotin, V.V., 1964. The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco.

Chen, C.Q., Shen, Y.P., 1996a. Piezothermoelasticity Analysis for circular cylindrical shell under the state of axisymmetric
deformation. International Journal of Engineering Science 34, 1585-1600.

Chen, C.Q., Shen, Y.P., Wang, X.M., 1996b. Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical
bending. International Journal of Solid and Structures 33, 4481-4494.

Chen, C.Q., Shen, Y.P., 1997. Stability analysis of piezoelectric circular cylindrical shells. ASME Journal of Applied Mechanics 64,
847-862.

Lam, K.Y., Ng, T.Y., 1997. Dynamic stability of cylindrical shells subjected to conservative periodic axial loads using different shell
theories. Journal of Sound and Vibration 207, 497-520.

McLachlan, N.W., 1964. Theory and application of Mathieu functions. Dover, New York.

Miller, S.E., Abramovich, H., 1995. A self-sensing piezolaminated actuator model for shells using a shear deformation theory. Journal
of Intelligent Material Systems and Structures 6, 624-638.

Ng, T.Y., Lam, K.Y., Reddy, J.N., 1998. Dynamic stability of cross-ply laminated composite cylindrical shells. International Journal
of Mechanics Science 40, 805-823.

Tamura, Y.S., Babcock, C.D., 1975. Dynamic stability of cylindrical shells under step loading. ASME Journal of Applied Mechanics
190-194.

Tzou, H.S., Tseng, C.L., 1991. Distributed modal identification and vibration control of continua: piezoelectric element formation and
analysis. Journal of Dynamic Systems Measurement and Control 113, 500-505.



X.-M. Yang, Y.-P. Shen | International Journal of Solids and Structures 38 (2001) 2291-2303 2303

Tzou, H.S., Zhong, J.P., Holkamp, J.J., 1994. Spatially distributed orthogonal piezoelectric shell actuators: theory and application.
Journal of Sound and Vibration 177, 363-378.

Tzou, H.S., Boa, Y., 1997. Nonlinear piezothermoelastic shell laminates. ASME Journal of Vibration and Acoustics 119, 374-381.

Yao, J.C., 1963. Dynamic stability of cylindrical shells under static and periodic axial and radial loads. AIAA Journal 1, 1391-1396.

Yao, J.C., 1965. Nonlinear elastic bucking and parametric excitation of a cylinder under axial loads. ASME Journal of Applied
Mechanics 32, 109-115.



